
A Novel Targeted Therapy of Leydig and Granulosa Cell Tumors
through the Luteinizing Hormone Receptor Using a Hecate–
Chorionic Gonadotropin BB Conjugate in Transgenic Mice1

Gabriel Bodek*, Susanna Vierre y, Adolfo Rivero-Müller y, Ilpo Huhtaniemi y,z,
Adam J. Ziecik* and Nafis A. Rahman y

*Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-714, Poland;
yDepartment of Physiology, University of Turku, Turku FIN-20520, Finland; z Institute of Reproductive
and Developmental Biology, Imperial College London, London W12 ONN, UK

Abstract

We investigated the antitumoral efficacy, endocrine

consequences, and molecular mechanisms underlying

cell death induced by the Hecate–chorionic gonadotro-

pin (CG)B conjugate, a fusionprotein of a 23–amino acid

lytic peptide Hecate with a 15–amino acid (81–95) frag-

ment of the humanCGB chain. Transgenic (TG)mice ex-

pressing the inhibin A-subunit promoter (inhA)/Simian

Virus 40 T-antigen (Tag) transgene, developing luteiniz-

ing hormone (LH) receptor (R) expressing Leydig and

granulosa cell tumors, and wild-type control littermates

were treated either with vehicle, Hecate, or Hecate–CGB

conjugate for 3 weeks. Hecate–CGB conjugate treatment

reduced the testicular and ovarian tumor burden (P <

.05), whereas a concomitant increase (testis; P < .05) or

no change (ovary) in tumor volumes occured with Hec-

tate treatment. A drop in serum progesterone, produced

by the tumors, and an increase in LH levels occured in

Hecate–CGB treated mice, in comparison with vehicle

and Hecate groups, providing further support for the

positive treatment response. Hecate–CGB conjugate in-

duced a rapid and cell-specific membrane permeabili-

zation of LHR-expressing cells in vitro, suggesting a

necrotic mode of cell death without activation of apop-

tosis. These results prove the principle that the Hecate–

CGB conjugate provides a novel specific lead into

gonadal somatic cell cancer therapy by targeted destruc-

tion of LHR-expressing tumor cells.
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Introduction

Early diagnosis and prevention of human gonadal tumors

remain difficult, which makes them a fatal group of malig-

nancies [1]. Although testicular tumors account for only 1%

of all tumors in males, they are the most common malig-

nancy in men between 15 and 34 years of age [2]. Leydig cell

tumors are generally benign and account for about 2% of all

testicular tumors, with malignancy occurring in about 10% of the

cases. If metastases are found, chemotherapy is the treatment

of choice because Leydig cell tumors are not radiosensitive [1].

Ovarian carcinoma is often called the ‘‘silent killer’’ because the

disease remains usually undetectable until the advanced

stage (II or IV) due to lack of diagnostic tests and absence of

solid symptoms [3,4]. Among ovarian tumors, those in granu-

losa cells are rare, accounting for 3.0% to 7.6% of primary

ovarian tumors. However, prospects of their treatment, in com-

parison to other ovarian cancers, are still poor [5,6]; tumor-

related mortality rate is 37.3% [3,7], and approximately 80% of

patients die of recurrent disease [7,8].

The major problems of cancer chemotherapies are related to

required therapeutic concentrations of drugs, exerting undesir-

able effects on normal cells and causing severe side effects [9].

The development of targeted antitumor drug delivery systems

has a great potential in enhancing chemotherapeutical efficacy

and specificity. Most of the lytic peptides produced by insects,

amphibians, and mammals have an amphipathic structure, and

they preferentially bind and insert into negatively charged cell

membranes [9]. In contrast to normal eukaryotic cells with low

membrane potential, the prokaryotic and cancer cell mem-

branes maintain a large membrane potential, and therefore many

lytic peptides preferentially disrupt prokaryotic and cancer cell

membranes rather than those of healthy eukaryotic cells [10].

To eradicate cancer cells and to reduce the toxicity of

treatment toward normal tissues, we developed a novel ap-

proach for the treatment of endocrine tumors possessing

luteinizing hormone receptors (LHRs). We synthesized the

Hecate–chorionic gonadotropin b (Hecate–CGb) conjugate,

a fusion protein of the 23–amino acid membrane lytic peptide
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(Hecate) [11] and the 15–amino acid fragment of the human

CGb chain. The 81– to 95–amino acid region of CGb com-

poses the most potent region of the full-size CG protein

with important [12] roles in receptor binding [13]. We hypo-

thesized that the Hecate–CGb conjugate could serve as an

effective drug for the LHR expressed in gonadal tumors and

possibly for some nongonadal tumors [14,15]. The affinity of

the Hecate–CGb conjugate to LHR by targeted destruction

of LHR-expressing prostate, breast, ovarian, and testicular

cancer cell lines [16,17], and in prostate PC-3, ovarian

OVCAR-3, and breast MDA-MB-435S tumor xenografts

implanted in nude mice in vivo has been demonstrated

[16,18,19]. There are no existing reports wherein the thera-

peutic efficacy, endocrine, physiological, and pathophysio-

logical consequences of Hecate or Hecate–CGb conjugate

treatment been evaluated, with the use of a transgenic (TG)

preclinical model of tumorigenesis in a heritable immuno-

competent model of disease.

In the present study, we investigated the therapeutic

efficacy of the Hecate–CGb conjugate to eradicate LHR-

expressing tumor cells in vivo in a TG mouse model ex-

pressing the inhibin a-subunit promoter (inha)/Simian Virus

40 T-antigen (Tag) transgene and developing gonadal

tumors [20,21], as well as monitored the subsequent endo-

crine effects of the treatment as an indication of the thera-

peutic effect. We also investigated in vitro the susceptibility

of LHR-expressing tumor cells to Hecate –CGb conju-

gate treatment and addressed the mechanisms underly-

ing induced cell death, which has not yet been studied

or reported.

Materials and methods

Cell Lines and Cultures

The murine Leydig tumor cell line (mLTC-1) (LHR-

positive) [37] was cultured in Waymouth medium (Sigma

Chemical Co., St. Louis, MO), supplemented with 9% heat-

inactivated horse serum (Life Technologies, Paisley, Scot-

land, UK) and 4.5% heat-inactivated fetal calf serum (iFCS;

Bioclear, Wokingham, Berks, UK) containing 0.1 g/l genta-

micin (Gibco BRL, Gaithersburg, MD). Murine Leydig tumor

BLT-1 (LHR-positive) [20], murine granulose KK-1 (LHR-

positive) [21], prostate cancer PC-3 (LHR-positive) [38], and

colon carcinoma HT-29 (LHR-negative) [39] cells were

maintained in DMEM/Ham’s F-12 1:1 medium (Sigma),

supplemented with 10% iFCS, 50 IU/l penicillin, and 0.5 g/l

streptomycin (Sigma). The cells were allowed to grow on

9.6-cm–diameter Petri dishes (Greiner Labortechnik, Fricken-

hausen, Germany), or on 6- or 24-well plates (Greiner) to

70% to 80% confluency under a humidified atmosphere of

95% and 5% CO2 at 37jC.

Preparation of Drugs

Hecate and the Hecate–CGb conjugate were synthe-

sized and purified in the Peptide and Protein Laboratory,

Department of Virology, Hartman Institute, University of

Helsinki (Helsinki, Finland) as described earlier [29].

Experimental Animals

TG mice of 5.5 months age, expressing the inha/SV40

Tag transgene [40,22], all possessing macroscopic gonadal

tumors, were selected for the experiment (7–10 mice per

group). Wild-type (WT) littermate mice (C57Bl) were used as

controls (n = 4–7 per group). For routine genotyping, PCR

analyses were carried out using DNA extracts from tail

biopsies, as previously described [21]. Mice were housed

two to four per cage, after weaning at the age of 21 days, in a

room with controlled light (12 hours of light, 12 hours of

darkness) and temperature (21 ± 1jC). The mice were

specific pathogen-free and they were routinely screened

for common mouse pathogens. Avertin anesthesia was used

in surgical operations and postoperative analgesia (bupre-

norphine, 3 mg/mouse, by intraperitoneal injections) was

administered on a routine basis. The University of Turku

Ethical Committee on Use and Care of Animals approved

the animal experiments.

Hecate and Hecate–CGb Treatments

At the beginning of the experiment (at the age of

5.5 months), the gonadal size was assessed during lapa-

rotomy under general anesthesia, by measuring their length,

depth, and width. The product of these three measurements

(expressed in mm3) was taken as approximation of the total

gonadal volume, and the tumor volume burden was as-

sessed as total gonadal volume per gram of body weight.

Animals were treated with either vehicle or Hecate–CGb
conjugate (12 mg/kg) or Hecate (12 mg/kg) by intraperito-

neal injections. The mice were injected once per week for

three consecutive weeks, according to the earlier treatment

protocols for in vivo treatment for nude mice xenografts

[16,19,17]. Seven days following the last treatment, the mice

were sacrificed by cervical dislocation, and blood was col-

lected by cardiac puncture. Body, tumor, and different organ

weights were recorded. Tissues were either snap-frozen in

liquid nitrogen or fixed in Bouin’s solution or 4% paraformal-

dehyde, dehydrated, and embedded in paraffin. Paraffin

sections of 5 mm thickness were stained with hematoxylin/

eosin for histologic analysis.

Northern Hybridization Analysis

Total RNA was isolated from WT and TG mice whole testis

or ovary (C; Hecate– and Hecate–CGb conjugate–treated

groups) using the single-step guanidinium thiocyanate–

phenol–chloroform extraction method [41]. Twenty micro-

grams of RNA per lane was resolved on 1.2% denaturing

agarose gel and transferred onto Hybond-XL nylon mem-

branes (Amersham International plc, Aylesbury, Bucks, UK).

Membranes were prehybridized overnight at 65jC in a solu-

tion containing 5� SSC, 5� Denhardt’s solution, 0.5% SDS,

50% formamide, and 5 g/l denatured calf thymus DNA. A

complementary RNA probe for the rat LHR generated from a

fragment of the LHR cDNA, spanning nucleotides 441 to 849

of its extracellular domain subcloned into the pGEM-4Z

plasmid, was used for hybridization [12]. The [32P]dUTP–

labeled (800 Ci/mmol; Amersham International) probe was

generated using a Riboprobe system II kit (Promega,
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Madison, WI). The probes were purified with NickColumns

(Pharmacia Biotech, Uppsala, Sweden). Hybridization was

carried out at 65jC for 20 hours in the same prehybridization

solution after the addition of labeled probe. After hybridization,

the membranes were washed twice in 2� SSC and 0.1% SDS

at room temperature for 10 minutes, followed by two washes

in 0.1� SSC and 0.1% SDS at 65jC to remove most of the

background. Finally, the membranes were exposed to Kodak

X-ray films (Kodak XAR-5; Eastman Kodak, Rochester, NY) at

�70jC for 4 to 7 days, or to a phosphor imager (Fujifilm BAS-

5000; Fujifilm IaI, Tokyo, Japan) for 4 to 24 hours. The

intensities of specific bands were quantified using the Tina

software (Raytest, Staubenhardt, Germany) and related to

those of the 28S ribosomal RNA in the gel stained with

ethidium bromide. The molecular sizes of the mRNA species

were estimated by comparison with mobilities of the 18S and

28S ribosomal RNA.

Hormone Measurements

LH concentration in sera was measured by a supersen-

sitive immunofluorometric assay for rat LH (Delfia; Wallac

Oy, Turku, Finland) as described earlier [40]. Progesterone

was measured from diethyl ether extracts of the sera by

RIA as described earlier [42,43]. We took additional serum

samples (n = 7–8) from 6.5-month–old tumor-bearing inha/

Tag male and female mice treated with vehicle as controls for

hormone analyses.

Fluorescent Microscopy for PI Staining

To prove the preferential destruction of LHR-expressing

cells and to determine the mechanisms involved in cell

death caused by the Hecate–CGb conjugate, we cocultured

two cell lines, either murine Leydig mLTC-1 (LHR-positive)

and human colon carcinoma HT-29 cells (LHR-negative) or

murine granulosa KK-1 (LHR-positive) and human colon

carcinoma HT-29 cells (LHR-negative) (data shown only for

mLTC-1 and HT-29 cells), on the same glass well slides.

Because the cells differed markedly in their shape and size,

they were easy to distinguish. The cells were incubated for

24 hours in complete Waymouth medium, followed by a

wash with 1� PBS, and a further incubation in the presence

or absence of 0.5 mM Hecate or Hecate–CGb conjugate for

15 minutes. Thereafter, the medium was removed and

replaced with fresh medium containing PI, which does not

enter cells with intact membranes, and thus differentiates

between lysed and intact cells when studied by fluores-

cence microscopy. In the second set of experiments, we

treated mLTC-1 and HT-29 cells for 30 minutes with con-

centrations of 0.5, 1, and 5 mM Hecate. In the third set of

experiments, we treated mLTC-1 cells with 0.5 mM con-

centration of the Hecate–CGb conjugate for 0, 15, and

30 minutes.

FACS Analysis

Cells from two Leydig tumor cell lines, mLTC-1 and BLT-1

[20], and a prostate cancer cell line, PC-3, were seeded into

six-well plates in complete medium and incubated at 37jC in

5% CO2 for 24 hours. Cells were washed once with PBS and

then incubated for the next 4 hours at increasing concen-

trations (0.1, 0.5, and 1 mM) of Hecate or Hecate–CGb con-

jugate. As an apoptotic positive control, we used 0.1% of

hydrogen peroxide added to the culture media. Both adherent

and floating cells were collected and stained with PI, and cel-

lular DNA content was analyzed by FACSCalibur flow cyto-

meter (Becton Dickinson, Franklin Lakes, NJ) as previously

described [44,45].

Immunoblotting Analysis for Caspase-3 Activation

Western blotting analysis was used to determine whether

caspase-3 was activated with an antibody recognizing the

precursor and the active subunits. One day before stimula-

tion, mLTC-1 cells were plated on six-well plates at a den-

sity of 1.2 � 105 cells/well in 0.5 ml of complete Waymouth

medium. The cells were washed once with PBS and then

incubated for 60 minutes at 0.5, 1, and 5 mM Hecate or

Hecate–CGb conjugate. Total cell lysates were prepared as

described previously [46] and subjected to electrophoresis

through a 12.5% SDS-PAGE gel (60 mg protein/well). After

electrophoresis, proteins were electrotransferred to nitro-

cellulose membranes. After blocking the membrane, it was

incubated with the primary rabbit monoclonal antibody (Cell

Signaling, Beverly, MA). Signals were visualized using ECL

Plus Western blotting detection reagents (Amersham Phar-

macia Biotech, Buckinghamshire, UK) and finally exposed to

X-ray film.

Caspase Inhibitor Z-VAD.fmk

Cells were seeded into six-well plates at a density of 2 �
105 cells/well. Twenty-four hours later, the medium was

replaced with new medium containing 20 mM pan-caspase

inhibitor Z-VAD.fmk (Calbiochem, Nottingham, UK) and in-

cubated for 1 hour. Hecate or Hecate–CGb conjugate was

then added at concentrations of 0.1, 0.5, and 1 mM and

incubated overnight. Incubation with the conjugate was

stopped after 16 hours. A colorimetric MTT assay was then

performed to measure cell survival [47]. We used 0.1% H2O2

as the positive control for apoptosis. Viability in the treated

cells was expressed as a percentage of controls. The

untreated controls were assigned a value of 100%.

Statistical Analysis

Statistical ANOVA paired t test analyses of variance were

carried out using a StatView program for Windows (version

5.0.1) (SAS Institute, Inc., Cary, NC). All data are presented

as the mean ± SEM.

Results

Hecate–CGb Treatment Reduced Tumor Volume

We were able to achieve an antineoplastic effect of the

Hecate–CGb conjugate on the inha/Tag TG mice. Here we

have used the same treatment strategy protocols used

earlier and established for in vivo xenograft treatments

[16,18,19]. Following 1-month treatment, total testicular

tumor volume decreased by an average of 58% (Figure 1a;
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P < .05; compared to the volume before treatment) and

that of the ovaries by 36% (Figure 1c). As the age-related

tumor progression rate was variable between animals,

which has been observed in the inha/Tag and Tag mice

before [22,20,21,23], we decided to show the tumor bur-

den, too. The gonadal tumor burden (i.e., tumor volume/g

body weight) after Hecate–CGb conjugate treatment in

both sexes decreased significantly in comparison with that

analyzed before treatment (Figure 1, b and d; P < .05). In

the Hecate-treated males, tumors grew steadily as in the

sham-treated control groups (Figure 1, a and b); but in fe-

males, the ovarian tumor volumes did not change signifi-

cantly (Figure 1, c and d ). Hecate–CGb conjugate and

Hecate treatments showed no significant influence on

gonadal volume in the WT mice group (Figure 1, a and c).

There were no statistically significant differences be-

tween the body weights among comparable groups (like

Hecate- or conjugate-treated, before and after the WT and

TG groups).

Hecate–CGb Treatment Was Specific Toward

LHR-Possessing Cells

To assess whether the Hecate–CGb treatment reduced

the LHR mRNA levels in comparison to Hecate- and sham-

treated TG control groups, we made a quantitative evaluation

from RNA extracts of the total testes and ovaries of TG mice.

Northern hybridization revealed that there was a concomi-

tant decrease in LHR mRNA expression in the Hecate–

CGb–treated testes and ovaries (P < .01 and P < .05; versus

Hecate-treated groups and/or the sham-treated TG control

Figure 1. Total gonadal volumes of male (a) and female (c) wild-type (WT) control littermate mice and inha/Tag transgenic (TG) mice, before and after 3 weeks of

Hecate–CGb conjugate (Panels A), Hecate (Panels B), or sham treatment (Panel C). (b and d) Tumor burden volumes (tumor volume/g body weight). The values

are mean ± SEM of both gonads. *P < .05, Hecate, Hecate–CGb conjugate, or sham-treated gonadal volume after treatment versus before treatment. WT, wild-

type control littermate mice; TG, transgenic mice expressing the inhibina Simian Virus 40 T-antigen (inha/Tag).
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group) (Figure 2), which confirmed the LHR-specific destruc-

tion effects of Hecate–CGb and was in line with the reduced

tumor volume data (Figure 1).

Endocrine Consequences of Treatment

We have earlier shown that the serum progesterone

levels rise significantly and those of gonadotropins drop along

with tumorigenesis (6-month–old TG mice) in comparison

with WT control littermates [24,25]. After 3 weeks of treat-

ment with the Hecate–CGb conjugate, serum progesterone

concentration decreased significantly both in females and

males (Figure 3A; P < .05; versus Hecate-treated groups

and the sham-treated TG control group) and serum LH

concentration increased in the Hecate–CGb conjugate–

treated groups (Figure 3B; P < .01 to P < .05; versus

Hecate-treated groups and the sham-treated TG control

group). The hormonal values thus allowed us to monitor the

positive treatment effects of the Hecate–CGb conjugate.

Histopathologic Analysis Demonstrates Antitumoral Effect

of Hecate–CGb Conjugate Treatment

Histopathologic analysis showed that Hecate –CGb
conjugate treatment of TG mice induced a definite degra-

dation of testicular and ovarian tumor mass (more marked

in testis). In many parts of the histologic tumor sections, we

found clear changes in tumor tissues, apparently induced by

the treatment. Especially in testicular sections, a high num-

ber of neoplastic Leydig cells were destroyed, and the tumor

tissues apparently contained necrotic cells (Figure 4, B and

D). In contrast, in tissue sections collected from TG mice

Figure 1. (continued)
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treated with Hecate as well as in sham-treated TG mice

(data not shown), cell death appeared quite sporadically and

multiple mitoses were seen in the tumors (Figure 4, A and

C). The histologic results supported the data of reduced

tumor volumes in Figure 1. We studied the cross-sections of

several other organs (lungs, pancreas, liver, spleen, adre-

nals, and uterus) for posttreatment side effects or metas-

tases. Only in two males and one female treated with

Hecate or vehicle were lung metastases found, but never

in Hecate–CGb conjugate–treated groups. Histologic study

revealed no apparent effects of the treatments in extra-

gonadal organs (data not shown).

Mode of Antitumor Effect and Specificity of Selective

Cell Death

The preferential killing of LHR-expressing mLTC-1 Leydig

cells, but not of LHR-negative colon carcinoma HT-29 cells,

was clearly shown with the propidium iodide (PI) exclusion

experiment (Figure 5A). Nuclear PI staining showed that

15 minutes of 0.5 mM Hecate–CGb conjugate treatment

induced rapid permeabilization of the cell membrane and

killing of LHR-positive mLTC-1 cells, but not of HT-29 cells

(Figure 5A). Hecate treatment for 30 minutes at 1 mM con-

centration killed HT-29 cells only; but at 5 mM concentra-

tion, it killed both HT-29 and mLTC-1 cells (vs 0.5 mM

Hecate–CGb conjugate, killing mLTC-1 cells; Figure 5A)

with similar efficacy, regardless of the LHR expression

(Figure 5B). At 0.5 mM concentration, Hecate did not have

any effects on either cell line (Figure 5B). It has never been

shown earlier in such a simple but trivial way that the

Hecate–CGb conjugate selectively kills cells possessing

LHR but spares cells without LHR.

We analyzed further whether the molecular mode of

cell death induced by the Hecate–CGb conjugate could

be by necrosis. Light microscopic analysis revealed that

the moderate dose of 0.5 mM Hecate–CGb conjugate

for 30 minutes induced swelling of the mLTC-1 cells

(Figure 5C), indicating that the cells died as a result of

acute injury, swelling, and bursting, which strongly suggest

necrosis [26,27].

Further Studies on Molecular Mechanisms of the Selective

Death of LHR-Expressing Cells Induced by the

Hecate–CGb Conjugate

Flow cytometric analysis. The cells from all the three

cell lines (data shown only for mLTC-1 cells) treated with

Hecate or Hecate–CGb conjugate were lysed, cell nuclei

were stained with PI, and the percentage of cells undergoing

apoptosis by nuclear fragmentation was determined. The

percentage of cells undergoing apoptosis in the presence

of H2O2 was 62.4%, 53.6%, and 88.8% for mLTC-1, BLT-1,

Figure 2. Northern hybridization analysis of LHR mRNA expression in

Hecate and Hecate–CGb conjugate– treated or sham-treated testicular

and ovarian tissues of inha/Tag transgenic (TG) males and females. Each

lane contains 20 mg of total RNA. The migration of the 28S and 18S rRNA

are shown on the left side of the LHR panel. The sizes of the different LHR

mRNA splice variants (in kb) are presented on the right. Two lanes for each

type of sample are depicted. One lane of WT male and female gonad mRNA

expression is shown on the right as a positive control for LHR mRNA. The

upper panel shows on the top the ethidium bromide (EtBr) staining of the 28S

rRNA for RNA loading control. The middle panel shows Northern hybridi-

zation for LHR mRNA. The lower panel shows the densitometric quan-

tification of the longest (7.0 kb) LHR mRNA splice variant (open bar for

Hecate and filled bars for sham-treated and Hecate–CGb– treated) in

arbitrary densitometric units (mean of TG sham-treated testis and ovaries

regarded as 100%) corrected for intensity of the 28S rRNA band. Each bar

represents the mean ± SEM of three independent experiments in dupli-

cates. **P < .01, *P < .05 (P < .01 and P < .05; Hecate–CGb– treated versus

Hecate-treated and/or sham-treated TG control group). TG, transgenic mice

expressing the inhibina Simian Virus 40 T-antigen (inha/Tag); TG-C, sham-

treated TG mice.

Figure 3. Serum progesterone (A) and LH (B) concentrations in inha/Tag
transgenic female and male mice after the 3-week treatment with either

Hecate, Hecate–CGb conjugate, or sham (TG-C). **P < .01, *P < .05 (P < .01

and P < .05; Hecate–CGb– treated versus Hecate-treated and/or sham-

treated TG-C control group). TG, transgenic mice expressing the inhibina
Simian Virus 40 T-antigen (inha/Tag); TG-C, sham-treated TG mice.
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and PC-3 cells, respectively (Figure 6). All three cell lines

challenged with increasing concentrations of Hecate–CGb
conjugate or Hecate (0.1, 0.5, and 1 mM) for 4 hours showed

lack of nuclear fragmentation (Figure 6).

Analysis of caspase-3 activation. Incubation of mLTC-1

cells with Hecate–CGb conjugate or Hecate at 0.5 mM

concentration for 90 minutes did not induce the activation

of caspase-3 when analyzed by Western blot analysis

(Figure 7). This treatment caused a decrease in cell viability

but no active form (17 kDa) of caspase-3 could be detected

(Figure 7). These data provide strong evidence that the

cell death occurred without the proteolysis of procaspase.

Next, to check whether any activation of the apoptotic

pathways had taken place while causing cell death by Hecate

or Hecate–CGb conjugate, we used the pan-caspase inhibi-

tor to pretreat the BLT-1 and mLTC-1 Leydig tumor cells. Both

BLT-1 and mLTC-1 cell viability showed similar decreased

levels after treatment with the Hecate–CGb conjugate, as it

was caused without the inhibitor pretreatment levels (results

not shown). The minimum concentration of the Hecate–CGb
conjugate leading to 50% cell death (EC50) was 0.1 mM for

mLTC-1 cells. The same concentration of the conjugate

decreased the viability of BLT-1 cells until 40%. In the

presence of 0.5 to 1 mM concentration of the conjugate and

pretreatment with the Z-VAD.fmk inhibitor, cell viability oscil-

lated between 50% and 40% for mLTC-1 cells and between

35% and 30% for BLT-1 cells (results not shown). The pres-

ence or absence of the Z-VAD.fmk inhibitor did not signifi-

cantly change Leydig tumor cell viability after the treatment of

the Hecate–CGb conjugate, but in the positive control for

apoptosis with 0.1% of H2O2, the presence of Z-VAD.fmk was

able to block apoptosis significantly (50%) (results not

shown). These results further proved that the mode of cell

death caused by the Hecate or Hecate–CGb conjugate was

not apoptosis, but necrosis, as shown in Figure 5C.

Discussion

In the present study, we took advantage of the established

inha/Tag TG mouse model of gonadal somatic cell tumori-

genesis [20,28,21,24,23], where the pathophysiological

and endocrine responses induced by tumorigenesis are

well-known. This information allowed us to gain insight into

the specific endocrine and paracrine consequences of the

Hecate and Hecate–CGb conjugate treatments. Here, we

were able to demonstrate in TG mice that the targeted

treatment with the Hecate–CGb conjugate, apparently

through binding to LHR, brought about effective blockage

and/or reduction of tumor growth. Hecate–CGb conjugate

treatment was able to reduce the total gonadal tumor

volumes of inha/Tag mice, without causing any noticeable

side effects.

It has been previously shown that the Hecate–CGb
conjugate is able to bind specifically to target cell membrane

LHR [29], including LHR-expressing tumor cells [16,17]. The

higher killing efficiency of the Hecate–CGb conjugate of

Leydig versus granulosa cells may be due to a higher level

of LHR expression in the former cell types. In accordance,

the granulosa (KK-1) and Leydig (BLT-1) cell lines derived

from the inha/Tag mouse gonadal tumors expressed 9870 vs

36,000 binding sites per cell, respectively [20,21]. The

Figure 4. Histologic pictures of hematoxylin/eosin–stained ovarian granulosa (A and B) and testicular Leydig cell (C and D) tumors of inha/Tag mice treated with

Hecate (A and C) or Hecate–CGb conjugate for three consecutive weeks. Arrows indicate that the interstitial tissue (B and D) has dramatically shrunken after

Hecate–CGb conjugate treatment (the bar in panel A is 40 �m; panels B–D have the same magnification as panel A).
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Leydig cell tumors with a higher number of LHR per cell were

more susceptible to the destructive action of the Hecate–

CGb conjugate, as shown by histopathologic analysis. We

did not observe any drug-related alterations in other organs

like the liver, kidney, or uterus. Besides the LHR expression

of the tumor cells, electrostatic interactions between nega-

tively charged tumor cell membranes and nontumor cells

may explain the specificity of the action [30]. Some in vivo

studies have shown that the specific anticancer activities

of some native and synthetic cationic lytic peptides (e.g.,

Hecate) occurred only when they were conjugated to hom-

ing domains and were quite limited [30,31]. Hecate might be

cytotoxic to prokaryotic [11] and eukaryotic [17] cells, but

only at much higher concentrations, and then to cell types

regardless of their LHR expression [29], as also shown in

this study.

In the inha/Tag TG mice, the onset of tumor formation

paralleled increased serum progesterone and decreased

gonadotropin concentrations, with the former apparently

originating from an increased number of progesterone-

secreting tumor cells in the ovary [28,24,25], indicating

that the tumors were endocrinologically active and able

to exert enhanced negative feedback effects on pituitary

function [24,25,23]. The steroidogenesis of Leydig BLT-1

and mLTC-1 cells was partly impaired because it did not

proceed beyond progesterone to testosterone [20]. How-

ever, progesterone was also able to exert negative feed-

back actions on gonadotropin secretion [24,25], which

explains the suppression of their secretion in male mice.

Hence, if the targeted antitumor therapy with the Hecate–

CGb conjugate kills Leydig and granulosa tumor cells, then

the elevated level of serum progesterone would decrease

and serum LH concentration would increase. Indeed, after

3 weeks of treatment with the Hecate–CGb conjugate, the

progesterone concentration was significantly decreased

in the inha/Tag mice and serum LH concentrations were

significantly elevated, as compared with the respective levels

of untreated tumor mice and those receiving Hecate. This

was considered a distinct sign of endocrine recovery from

the hormonally active tumorigenesis under the Hecate–CGb
conjugate treatment.

We finally wanted to investigate the molecular mecha-

nisms underlying the mode of action of the Hecate–CGb
conjugate, namely the mechanisms involved in targeted cell

death. The cytotoxic effect of most antitumor agents de-

pends on the induction of apoptosis in susceptible tumor

cells [32]. Apoptotic cell death is characterized by a series

of specific events including the activation of the caspase

cascade, cell shrinkage, cell membrane blebbing, and

condensation and fragmentation of chromatin [33]. There

is evidence that the sensitivity of various tumor types to

current therapeutic methods depends on the activation of

multiple apoptosis-regulatory proteins [33,31,34]. There is a

preliminary report showing the involvement of phospholi-

pase PKC rather than PKA (PKC increased the sensitivity

to the drug) in breast cancer cell lysis by lytic peptide

hecate [19], although it has been also shown that PKC

activation can be antiapoptotic, too [35,36]. In this study,

two types of cocultured cell lines with or without endoge-

nous LHR treated with Hecate–CGb proved the high speci-

ficity for the LHR-expressing cells only, which has not been

shown earlier so precisely. The chain of events showed that

the binding of the Hecate–CGb conjugate to the LHR and

the rapid (within 15 minutes of PI administration) perme-

abilization and perturbation of cell membrane were the

cause of cell death. It seems that once the membrane

layer integrity is disturbed, which happens rapidly within

minutes, the transmembrane electrochemical potential col-

lapses and cell death occurs. Cell viability measurements

and fluorescence microscopic observations verified that the

cells died as a result of injury, swelling, and bursting, sug-

gesting signs of mechanisms of induction of necrosis, which

also has never been shown before. All attempts to dem-

onstrate apoptosis as a result of the treatments yielded

negative results.

Taken together, the present data provided strong evi-

dence for a rapid and specific killing mechanism by the

Hecate–CGb conjugate toward LHR-expressing gonadal

tumor cells through necrotic plasma membrane disrup-

tion. Cancer cells commonly have impaired/deleterious or

mutated genes involved in apoptosis, making them often

apoptosis-resistant. Therefore, the specific targeted necro-

sis induced by the Hecate–CGb conjugate for cancer cells

may offer an advantage and assure that the neoplastic

cells would not develop drug resistance to destructive

mechanism. Our in vivo results demonstrate that the

targeted therapy of gonadal somatic cell tumors expressing

LHR by the Hecate–CGb conjugate is potentially useful

and worthy of further testing, with potential for future

human trials.

Figure 5. Fluorescent and light microscopic analysis of cocultured Leydig tumor mLTC-1 (LHR-positive, bigger cells) and colon carcinoma HT-29 (LHR-negative,

smaller cells) (marked with arrows). (a) Pretreated with 0.5 �M Hecate–CGb conjugate for 15 minutes in the presence of nonpermeable PI in the media. The left

panels (A and B) showed the light microscopic pictures of two different cell mixtures. The upper and lower middle darker field panels (C and D) showed PI

fluorescent microscopy. The cell membranes of the mLTC-1 cells were preferentially perturbed by the Hecate–CGb conjugate. Panels E and F are merged pictures

of light and PI fluorescent microscopy (the bar in panel A is 40 �m; panels B–F have the same magnification as panel A). PI, propidium iodide. (b) Pretreated for

30 minutes with an increasing dose of Hecate: (A and D) 0.5 �M, (B and E) 1 �M, and (C and F) 5 �M Hecate in the presence of nonpermeable PI in the media. The

left panels (A–C) show the light microscopy pictures. The right darker panels (D–F) show PI fluorescent microscopy. Hecate killed both mLTC-1 cells and HT-

29 cells with the highest (5 �M) concentration used not depending on their LHR content. A concentration of 1 �M Hecate killed only HT-29 cells (the bar in panel A

is 40 �m; panels B–F have the same magnification as panel A). PI, propidium iodide. (c) Light microscopic picture of a single mLTC-1 Leydig tumor cell incubated

in 0.5 �M Hecate–CGb conjugate for 0, 15, and 30 minutes. Cell swelling could be observed at 30 minutes (C), which strongly suggests necrosis as the mode of

cell death (the bar in the panel A is 40 �m; panels B–C have the same magnification as panel A).
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Figure 5.
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Figure 6. Flow cytometric analysis of mLTC-1 cells treated for 4 hours with concentrations of 0.1, 0.5, and 1 �M Hecate–CGb conjugate or Hecate. Cells treated

with 0.1% H2O2 for 4 hours were used as positive apoptotic controls. After incubation, cells were lysed in a hypotonic solution containing nonpermeable PI and

analyzed by FACS (FACSCalibur flow cytometer; Becton Dickinson). Neither Hecate–CGb conjugate nor Hecate treatment induced nuclear fragmentation in

mLTC-1 Leydig cells. The numbers on the top left quadrant of the panels represent the percentage of apoptotic cells. The data are representative of three separate

experiments with similar results.
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